Part 2

Creativity and design

Theme 1 Creativity and design
Creativity, improvisation and organizations

Colin M. Fisher and Teresa Amabile

Introduction

Although the literatures on both organizational creativity and organizational improvisation have been expanding in recent years, the links between these literatures have not been deeply explored. This chapter explores those links to create a conceptualization of improvisational creativity in organizations. After reviewing existing theory on the creative process in organizations, and existing theory on organizational improvisation, we synthesize the two, fill in some conceptual gaps, and propose a preliminary model. The chapter ends with research questions suggested by our analysis.

The creative process in organizations

As the world moves more deeply into the twenty-first century, more and more of the important new ideas seem to emerge from organizations. Lone creators appear increasingly anachronistic, as teams and larger groups in organizations become the dominant mode through which progress is made in much of the world. Appropriately, then, organizational scholars have been turning their attention increasingly to organizational creativity over the past several years.

The term ‘organizational creativity’ has been variously used to refer to the creativity of an organization’s new products, services, processes, or strategies (e.g. Amabile 1988, 1996; Ford 1996; Woodman et al. 1993); the creativity of members of an organization (e.g. Guilford 1950; Nicholls 1972); and the processes undertaken by members of an organization (e.g. Drazin et al. 1999). In this chapter, we adopt the widely accepted definition of organizational creativity as the production of ideas for novel and appropriate (useful or valuable) products, services, processes or strategies in an organization (Amabile 1996; Rothenberg 1990; Stein 1953). However, we focus here not on those ideas but on the process by which they are produced.

Scholarly research on creativity began in the psychological domain, and the traditional view of the creative process in psychology stems from Wallas’ (1926) seminal work. Wallas proposed four distinct stages: (1) Preparation, in which the problem to be solved is detected, and relevant data are identified; (2) Incubation, in which the problem is ‘left alone’ for a time while the
unconscious mind works on it; (3) Illumination, in which the idea or solution suddenly appears; and (4) Verification, in which the idea or solution is tested against criteria of acceptability. Subsequent psychological theories of the creative process have presented variations on these ideas. In some (e.g. Simonton 1999), incubation plays a prominent role; in others (e.g. Amabile 1996), it is combined with illumination in an idea-generation step. Generally, however, psychological theories addressing the creative process include distinct stages, in sequence, moving from understanding the problem, to developing creative solutions, to selecting among the alternative solutions (Kaufmann 1988).

We refer to this standard view as compositional creativity, and it seems to adequately capture many instances of creativity in organizations, such as the creation of new products through carefully planned and rigorously followed stage-gate processes. However, there is another form of creative process, in which there is little evidence of distinct stages across time. Following Sawyer (2000), we refer to this as improvisational creativity. Although we will offer a formal definition later, we begin by offering examples of improvisational creativity in three primary organizational situations that are likely to evoke such a process: responses to emergent crises, responses to unexpected opportunities, and responses generated as part of a more compositional creativity process.

First, emergent crises can evoke improvisational creativity. Weick (1993) analyzed the Mann Gulch disaster, in which some fire fighters were able to go beyond the scope of their training and survive by lying in the ashes of a small fire they created as the larger fire passed around them. Serious crises arise suddenly within organizations, as well. In 1982, three people died after taking the over-the-counter medication Tylenol that had traces of poison in it. James Burke, CEO of Johnson and Johnson, which manufactured and sold Tylenol, had to react quickly and decisively to this crisis, with incomplete knowledge about the source of the poison (possibly introduced during the manufacturing process) and with considerable conflicting advice (Tedlow and Smith 1989). Burke’s decision, made under extreme time pressure and with national attention, was to recall all Tylenol products from all stores immediately. At the time, many analysts predicted that this decision would mean the demise of the product. Nonetheless, Burke’s decision and subsequent immediate actions (after the discovery that the products had been tampered with in stores by a private citizen) are now credited with restoring the public’s trust in the brand and saving the company.

Second, unexpected opportunities call for improvisational creativity. In 1970, PhD engineer and entrepreneur George Hatsopoulos was trying to start an instrument business within his modestly successful young company. He had some ideas for industrial measurement instruments he might design, but no such products. At a lunch meeting, a Ford Motor Company executive complained that the US Congress had just passed the Clean Air Act of 1970, requiring all new vehicles to monitor and control oxides of nitrogen to an accuracy of one part per million, but there were currently no instruments available to fulfill this requirement. On the spot, Hatsopoulos promised that, if Ford placed an order with him, he would deliver an instrument in three months that would fulfill their requirements. Hatsopoulos had no product (nor even a prototype) but, after his fateful lunch meeting, he received orders not only from Ford, but from Toyota and Mercedes as well. He found that price was no object to them, because they knew his was the only instrument that would soon be available. Hatsopoulos’ improvised response to this unexpected opportunity was the beginning of a great corporate success story: Thermo-Electron Corporation, an industrial powerhouse for several decades (Kahalas and Suchon 1995).

Third, improvisational creativity can be embedded within a larger process of compositional creativity. Some organizational scholars have recognized this possibility. Eisenhardt and Tabrizi
(1995) found that improvisation helped accelerate innovation processes in computer product development. Sutton and Hargadon (1996), in their ethnography of the celebrated design firm IDEO, described the central importance of highly improvisational, time-constrained brainstorming practices within the entire process of designing new products – a process that can, in total, take several weeks or months.

Organizational theorists have recently begun to consider the role of improvisation within organizations (e.g. Moorman and Miner 1998; Vera and Crossan 2005), sometimes drawing on improvisational performing arts such as jazz for conceptual inspiration (e.g. Barrett 1998). However, few have made explicit links to the more established literature on organizational creativity. In this chapter, we aim to make those links. After reviewing the literature on compositional creativity and the literature on organizational improvisation, we propose a synthetic model of creative improvisation in organizations. We end by sketching some research questions provoked by our analysis.

Compositional creativity in organizations: the traditional approach

Comprehensive theories of organizational creativity were proposed by Amabile (1988, 1996), Ford (1996) and Woodman *et al.* (1993). To the extent that they address the creative process at all, these theories view it according to defined stages similar to those specified in the psychological literature. For example, the componential theory of organizational creativity (Amabile 1988, 1996) proposes five stages similar to Wallas’ (1926): (1) Problem presentation (or task identification), based on either an internal or an external stimulus; (2) Preparation: building up and/or reactivating a store of relevant information and response algorithms; (3) Response generation (or idea generation): searching memory and the immediate environment to generate response possibilities; (4) Response execution (validation and communication): testing response possibilities against factual knowledge and other criteria; and (5) Outcome: success, failure, or progress toward the goal. Although the theory includes caveats that the stages do not always happen in strict sequence, and that there is often an iterative cycling from later stages back to earlier ones, the underlying assumption is that the process happens in a more or less ordered fashion, over a considerable period of time. This view extends to empirical work. Most psychological and organizational research on creativity investigates situations in which individuals are given a problem or task, have some time to prepare themselves to carry it out, generate response possibilities, and choose an idea to communicate from among those possibilities that seem most promising. Depending on the context (laboratory or field research), the time period can range from an hour or less, to several days, weeks or months.

The componential theory (Amabile 1996) also outlines the four necessary components for an individual to carry out such a process. The theory includes three intra-individual components – task motivation, domain-relevant skills, and creativity-relevant processes. It also includes the environment in which the individual works. The source of task motivation can be primarily external, wherein a person is motivated through rewards and punishments, or internal, wherein a person wants to do a task for its own sake. Task motivation is affected by the social environment and the success (or failure) of previous work on the task or in the domain. Domain-relevant skills include the technical knowledge and skills necessary to perform the task. Creativity-relevant processes include thinking styles, heuristics, and working styles. The ability to increase domain-relevant skills and creativity-relevant processes through learning is influenced by task motivation.

According to this theory, the components described above have differential effects on the
stages of the creative process. Problem presentation (Stage 1) is primarily affected by task motivation—a person is more likely to find a problem and engage the creative process if he/she finds the task interesting. Preparation (Stage 2) is affected by the domain-relevant skills an individual brings to bear on the task; at times, a person may have to build up domain-relevant skills in order to begin work. Response generation (Stage 3) is affected again by task motivation and also by creativity-relevant processes. Creativity-relevant processes determine how flexibly a person uses cognitive and physical resources and how many responses can be generated. Further, task motivation influences the likelihood that creativity-relevant processes will be engaged enough to generate novel and multiple options. In response execution (Stage 4), domain-relevant skills again come in to play; how well someone performs the task and assesses the appropriateness of the generated novel responses depends on his/her skill in the domain. After a response is selected, the goal is either attained or not (Stage 5), or some progress is made, often resulting in a return to an earlier stage. Success (or failure) in achieving (or progressing toward) the goal subsequently affects task motivation to continue the task or to participate in the future.

Unlike traditional stage models of creativity, however, improvisation condenses many of the traditional stages of creativity. To improvise, actors must simultaneously identify new challenges and generate responses, with little or no time to prepare or activate relevant information. In fact, the process of improvising is one single step: a response is generated and executed as the task is presented. Preparation must happen previously, outside of the frame of action. Although it is clear that there are significant differences between compositional and improvisational processes, we must first clearly delineate the two processes to illuminate these differences.

Improvisation and composition in organizations

In the literature on musical creativity, there is an accepted distinction between composing and improvising music (i.e. Nettl 1998). Well-known jazz saxophonist Steve Lacy provides a succinct explanation of the difference between improvisation and composition:

> In 1968 I ran into [improviser/composer] Steve Lacy on the street in Rome. I took out my pocket tape recorder and asked him to describe in fifteen seconds the difference between composition and improvisation. He answered: ‘In fifteen seconds the difference between composition and improvisation is that in composition you have all the time you want to decide what to say in fifteen seconds, while in improvisation you have fifteen seconds.’ His answer lasted exactly fifteen seconds and is still the best formulation of the question I know.

(Bailey 1993: 140–141)

As Lacy pointed out, the main difference between improvisation and composition is the time available for response generation and the simultaneity of response generation and execution in improvisation. This distinction is echoed in Sawyer’s (2000) descriptions of improvisational creativity and ‘product creativity’ as separate processes in the arts.

Organizational scholars have also distinguished improvisation from other types of action on several dimensions, including temporal separation of response generation and response execution. Moorman and Miner (1998) define improvisation as ‘the degree to which the composition and execution of an action converge in time’ (p. 698). Vera and Crossan (2005) define team improvisation as ‘the creative and spontaneous process of trying to achieve an objective in
a new way’ (p. 205), building on the same principle from Crossan and Sorrenti’s (1997) definition of improvisation as ‘intuition guiding action in a spontaneous way’ (p. 156). From their review of the literature on organizational improvisation, Cunha et al. (1999) define organizational improvisation as ‘the conception of action as it unfolds, by an organization and/or its members, drawing on available cognitive, affective and social resources’ (p. 302).

In all these definitions, we see the central role of two concepts: novelty and time. Moorman and Miner (1998) explained that improvisation must involve novelty and diverge in some way from prior plans or designs (p. 702). In fact, ‘conception of action as it unfolds’ (Cunha et al. 1999: 302) can only be claimed if response execution diverges in some way from prior plans and habits; if one is using a plan or a habit, then the action was conceived of before it unfolded, and the process is not improvisational. Vera and Crossan (2005) call improvisation ‘creative,’ in the sense of a process that is intended to generate novelty, but may succeed or fail. Equally central to definitions of improvisation is the role of time – all of these definitions propose that conceiving of what to do (response generation) and doing it (response execution) must be simultaneous or convergent in time. If we array organizational action on these two dimensions, we can summarize organizational action using the four categories depicted in Figure 2.1.

Highly novel actions are arrayed in the top two quadrants and are often referred to as creative processes. Indeed, both improvisation and composition can generate novel products or outcomes; what differentiates the two is the time between the moment when the action is conceived and the moment when that action is executed. In composition, there is clear temporal separation between when a response is generated and when it is executed. In improvisation, there is little such separation – responses are generated and executed simultaneously. For example, in musical composition, composers often outline every detail of a symphony – not only the notes and rhythms, but the dynamics (loudness), the tempo, and many expressive considerations – long before a symphony orchestra ever plays any of it. In contrast, a jazz musician chooses notes, rhythms, dynamics, and all expressive considerations at the same time the music is being performed.

The bottom two quadrants (III and IV) represent actions low in novelty. When one is forced...
to act in the moment, with little time for planning, but responds in planned or habitual ways, we see quadrant III—algorithmic execution. Ruscio and Amabile (1999) use the term ‘algorithmic’ to describe those instructions that specify each step of an action and are learned by rote. Similarly, actions low in novelty that are configured on the spur of the moment must rely on elements that are commonly used or were learned by rote at an earlier time. In contrast to improvisation, algorithmic execution is either the execution of a composed plan, like a computer running code, or a habitual response. For example, operators in a nuclear power plant follow detailed written procedures in almost every aspect of their work, specifying which buttons to push, where each button is located, how to assess if pushing the button generated the desired outcome, what page to proceed to if pushing the button does not result in that outcome, and so on (Wieringa and Farkas 1991). Habitual responses, which must compete with novel responses (Ford 1996), are also examples of algorithmic execution.

When novelty is low and temporal separation is high, we see algorithmic planning (quadrant IV). Algorithmic planning is like creating the list of procedures for the nuclear power plant operators to follow—the procedures to be written down are known (and often legislated) and the job of the actor is to record them as accurately as possible so that others may execute those instructions; their only concern is to express the plan so that it is executed without errors or violations (Wieringa and Farkas 1991). Because both quadrants III and IV are low in novelty, and thus, not creative, they lie outside the scope of the remainder of this chapter and will not be discussed further.

Clearly, these four types of action rarely occur in their pure forms; in practice, improvisation generally involves the execution of parts of previously composed material, and many compositions come about partially through moments of improvisation. Furthermore, both improvisation and composition often rely on a ‘vocabulary’ of pre-existing small chunks of action—called ‘ready-mades’ in improvisational theatre (Vera and Crossan 2004) or ‘licks’ in jazz (Bailey 1993)—which introduce many elements that are not, by themselves, novel. However, despite these grey areas, thinking about improvisation and composition as relatively distinct processes has interesting implications for research on creativity.

If we situate improvisation within the stages outlined in the componential theory of creativity, we find that improvisation is characterized by the way it combines some aspects of the compositional process. Improvisation describes actions in which there is a high divergence from prior actions or plans, combined with a low temporal separation of problem identification, idea generation, and idea execution. Thus, we define improvisation as actions with high novelty (divergence from prior actions) and low temporal separation of conception and execution. Improvisational actions are arrayed on a continuum, depending on the degree of novelty and the degree of temporal separation. When such actions occur in an organizational context, they are considered to be instances of organizational improvisation.

Creative improvisation in organizations: a synthesis and proposed model

The relationship between improvisation and creativity is unclear in the existing literature. Some theorize that improvisation and creativity are two overlapping but distinct concepts because many creative products are not improvised (e.g. Moorman and Miner 1998). Others argue that improvisation is a ‘creative process’ that is intended to generate creative products, but may or may not succeed in generating a creative (novel and appropriate) outcome (e.g. Vera and Crossan 2004). We propose that improvisation is one process by which creative products or...
actions can be generated, but that not all improvisation results in true creativity – appropriate novelty. Figure 2.1 specifies the elements that are necessary for improvisation: high novelty (divergence from prior actions), and low temporal separation of conception and execution. But improvisation requires one additional element to achieve the status of creativity. The action must not only be spontaneous and novel, it must also be appropriate, in order to meet the definition of creativity.

As noted earlier, there are two different types of creativity. A key difference between the two, improvisational and compositional creativity, is that process and product cannot be separated in improvisation. In composition, the process of composing results in some sort of product, service, or design. This resultant product is then assessed for creativity. For example, a Picasso painting that hangs in a gallery is creative to the extent that viewers find it novel and appropriate – expressive or aesthetically appealing – regardless of the process behind it. In contrast, in improvisation, the unit of assessment is the act of creating; the improvisation is both the process of action and the product that is judged as creative or uncreative. For instance, when we call Hatsopoulos’s behaviour at that fateful lunch ‘creative,’ we are characterizing what he did as both novel (because it was far from the typical or expected response) and appropriate (because it responded perfectly to the demands of the situation in which he found himself). Because his improvised actions responded to situational demands appropriately, they can be considered creative.

Thus, we propose that all improvisational creativity includes one key element that has not been specified by improvisation theorists: responsiveness to temporally proximate stimuli. Temporally proximate stimuli consist of whatever relevant situational factors are observable at or immediately before the moment of action. In a jazz band, those stimuli are usually what other group members are playing and what the individual himself just played. Jazz bands are creative as a group to the extent that they are responsive to and adjust to what the other members of the group play. Even if the individual contributions of group members were novel and appropriate when heard individually, the group would not be considered a creative improvising unit unless group members were responsive to each other.

Drawing on prior conceptions of organizational creativity (especially the componential theory of creativity (Amabile 1988, 1996) prior conceptions of improvisation in organizations, and the new idea of responsiveness to temporally proximate stimuli, we propose a preliminary model of creative improvisation in organizations. (See Figure 2.2.)

In this model, we define creative improvisation as actions responsive to temporally proximate stimuli, where the actions contain both a high degree of novelty and a low temporal separation of problem presentation, idea generation, and idea execution. Such actions are arrayed on a continuum, depending on the degree of novelty, the degree of temporal separation, and the degree of responsiveness to temporally proximate stimuli. When such actions occur in an organizational context, they are considered to be instances of organizational improvisational creativity.

In contrast to traditional models of compositional creativity, our model contains two distinguishing features: (a) preparation precedes the improvisational process, and (b) the stages are ‘fluid’, with problem presentation, response generation, and response execution happening virtually simultaneously. In compositional creativity, preparation might include learning relevant skills and obtaining information necessary to perform the task. For example, when an advertising agency team is developing a campaign for a new client, it often researches previous advertising campaigns, learns about the industry, and compares the client to its competitors before beginning to generate responses. In improvisational creativity, however, such preparation cannot occur because immediate action is needed; individuals must instead build up a store of
knowledge and routines that are both quickly accessible and flexible to various situational demands. Jazz musicians, for example, learn common patterns and theory before knowing what song they will play at a jam session; the ideas used in a solo are generated and executed as they are performed. Similarly, Hatsopoulos did not prepare a response to his lunch partner’s complaints after contemplating them; he told the Ford executive of his ideas as they came into his head, based on his extensive prior research, training and experience.

After preparation comes the actual process of improvisation. As we described earlier, improvisation is defined by the temporal convergence of response generation and execution. Response generation and execution are prompted and shaped by the temporally proximate stimuli, which constantly inform and shape the problem at hand – the problem presented by the external environment. Crises, such as Burke’s case at Johnson and Johnson, are instigated by external stimuli that can change over time. As events unfold and data becomes available, actions are shaped accordingly, and the nature of the problem itself can change. In this way, temporally proximate stimuli not only present the problem but also shift as responses are generated and executed. The resultant improvised creative outcomes are novel (by being divergent) and appropriate (by responding to temporally proximate stimuli). As we mentioned earlier, these outcomes might be the final result, as in a jazz improvisation, or they might represent possible responses in a compositional process, as in the structured brainstorming used at IDEO (Sutton and Hargadon 1996).

The components that influence improvisational creativity also differ somewhat from those in the componential model of creativity (Amabile 1996). In improvisational creativity, a large number of well-learned facts and routines that are both readily accessible and flexibly organized are important prior to action. Unlike in compositional creativity, such expertise cannot be obtained after a problem is presented. Because improvisation often occurs in response to crises
or unexpected opportunities, it is likely that a person or group with less expertise would improvise less creatively in such situations.

Further, we propose that the creativity-relevant processes of risk-orientation (Barrett 1998; Cunha et al. 1999) and responsiveness to temporally proximate stimuli are especially important for improvisational creativity. Risk-orientation is often essential for an individual to engage in improvisation instead of pursuing a more known, if less creative, path during turbulent times.

Similar to its role in compositional creativity, intrinsic motivation is important for engaging in and persisting with improvisation. An intrinsically motivated person who is improvising can focus more on the problem presenting itself, instead of focusing on evaluation and its impact on rewards and punishments. Furthermore, because improvisation is often used instead of algorithmic execution in times of crisis, several theorists have proposed that internal motivation will increase not only from the success of the process, but from the increased autonomy that improvisation offers members of an organization (e.g. Barrett 1998).

We propose that several aspects of the work environment that have been identified in the improvisation literature also facilitate improvisational creativity in organizations. Cunha et al. (1999) identified an experimental culture and minimal structures as important environmental conditions for improvisation. An experimental culture is one that tolerates or promotes mistakes as a source of learning, promotes action, and has a sense of urgency. It is likely that a culture that tolerates mistakes and promotes action will facilitate improvisational creativity. Minimal structures mean that there are only loose procedures in place in domains where improvisation is likely; having more detailed policies would make people likely to follow them and execute algorithmically. Finally, Crossan and colleagues (2005) have proposed that the availability of real-time information is crucial. Having access to real-time information and structures that facilitate its communication increases the resources that improvisers have available to them, multiplying the sources of ideas and solutions.

Overall, this model highlights certain contrasts to traditional models of compositional creativity. Specifically, the role of preparation and the synchronous nature of problem presentation, response generation and response execution are starkly contrasted with linear ideas of the creative process. Furthermore, we propose a number of elements that facilitate improvisational creativity. However, there is a great deal of research that must be done in the future to fully understand what facilitates improvisational creativity and to fully explicate the nature of its differences from compositional creativity.

Future research

At the intersection of research on creativity and improvisation in organizations, there is still much to be explored. Much of what is known about creativity has been drawn from studies of compositional creativity and may not apply to improvisational creativity. For example, many creativity-relevant processes, such as the ability to generate alternatives, divergent thinking, concentration and using effective heuristics (Amabile 1988), might apply equally to improvisation and composition. However, Amabile (1996), Campbell (1960) and Simonton (1999) proposed that accurate memory is a creativity-relevant process, but different types of memory may not play an equal role in improvised and composed creativity. Moorman and Miner (1998) postulated that procedural memory (memory for how to do things) and declarative memory (memory for facts) affect improvised outcomes differentially. They propose that higher levels of declarative memory result in more creative (both novel and coherent) improvisation, and that higher levels of procedural memory result in more coherent, but less novel, improvisations.
Although it is possible that creativity-relevant processes like procedural memory affect improvisational and compositional creativity differentially, researchers should also examine the extent to which such previous work on improvisation in organizations might apply to compositional creativity. For instance, procedural memory is thought to inhibit novelty in improvisation because having high procedural memory habituates responses, making them more likely to arise in the course of action. However, Ford (1996) makes a very similar argument about creative action in general, positing that creative actions will only be selected when individual, social and environmental pressures push actors away from habitual responses. It may be that this phenomenon is not unique to improvisation, but is true of all creativity. Indeed, research on compositional creativity has found dampening effects of reliance on algorithmic learning (Ruscio and Amabile 1999), and future research could examine the relationship between algorithmic learning and procedural memory.

There are, though, many crucial differences between the factors that facilitate and inhibit improvisational and compositional creativity. The main contrast, as might be expected, is likely to be the role of urgency in improvisation and composition. Time pressure has been shown to be largely detrimental to compositional creativity (Amabile et al. 2002), whereas such time pressure is often what produces improvisation in the first place. However, there is an important difference between feeling pressured and working in a real-time environment. Crossan and colleagues (2005) proposed that, even in a time-pressured environment, team-level improvisation is facilitated by real-time information and communication, likely in a way that compositional creativity is not.

Our model suggests a number of questions that are yet to be investigated. For instance, little is known about the forms of preparation that are best suited to improvisational creativity. As Barrett (1998) points out, jazz musicians rely on ‘minimal structures for maximal flexibility’; meaning that they rely on a skeletal harmonic and rhythmic structure that increases coordination and focuses attention. However, jazz musicians devote years of intense practice to being able to work with these structures on the fly. Further, in addition to the high costs of preparation, several scholars have argued that expertise itself involves costs to creativity because of the increased rigidity that comes from experience and becoming part of the status quo in a particular domain (i.e. Runco et al. 2007). To facilitate improvisational creativity, one must acquire the expertise to operate fluently in a domain without also acquiring the lack of novelty that often accompanies increased expertise. Can organizations use similar structures to facilitate creativity if the cost of preparation is as high? How high is the cost of preparation for improvisation in organizations, and what contextual factors influence this cost? What would the organizational equivalent of such ‘practice’ look like? What tradeoffs and costs to creativity might occur through fostering the fluency necessary to improvise?

Additionally, because of the prior research focus on compositional creativity, there is a dearth of research on the necessary expertise, creativity-relevant processes, intrinsic motivation and organizational work environments most conducive to improvisational creativity. For example, is there a distinct creativity-relevant skill of being responsive to temporally proximate stimuli and, if so, is it stable across domains? Some researchers (e.g. Amabile 1996) have argued that aspects of creative thinking transcend domain. Could such responsiveness be a similar skill? To what extent, and under what conditions, can it be learned?

Finally, in pointing out the intersections and divergences of the organizational creativity and improvisation literatures, we hope to stimulate synergy between the two. Indeed, there is little reason to research improvisation as a path to creativity unless doing so will bring us beyond what we already know about composition. One possible explanation for the separateness of these literatures is that composition is an intentional, often deliberate process most often found
when organizations look for new ideas. Improvisation, on the other hand, is often forced upon members of an organization and getting through the situation, not creativity, is the goal. However, organizations that do not build a capacity to respond in novel and appropriate ways to emergent crises, unexpected opportunities, and dynamic environments are at a competitive disadvantage just as much as organizations that do not produce novel ideas and products. We believe that exploring the similarities and differences between improvisational and compositional creativity in organizations will yield a greater understanding of creativity in general.

Note

1 It should be noted that creative processes do not always result in creative products or actions (Vera and Crossan 2004), as the success of that product or action also depends on its appropriateness.

References